COMPLEMENTARY TRIBONACCI SEQUENCES

DURSUN TASCI and SIMGE ODABAS

Department of Mathematics Faculty of Science University of Gazi 06500 Ankara Turkey e-mail: dtasci@gazi.edu odabassmg@windowslive.com

Abstract

Assuming non-empty two sequences of positive integers are a_1, a_2, \dots, a_n and c_1, c_2, \dots, c_m . If two sequences have no common elements and they are definitely increasing, they are called "complementary". When a_1 and a_2 are given, we obtain (a_i) by the help of (c_i) , which occurs Tribonacci-like recurrence $a_i = c_{i-1} + c_{i-2} + c_{i-3}$ for $i \ge 4$. In this case, the sequence (c_i) is the complement of (a_i) .

1. Introduction

For $a_1 \leq a_2$, the sequences (a_i) and (c_i) are defined by

$$a_i = c_{i-1} + c_{i-2} + c_{i-3}$$
 for $i \ge 4$,
 $c_1 = \text{smallest number} \ne a_1, a_2$, (see [1]) (1)

Received April 10, 2014

© 2014 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: Primary 11B20, 11B25.

Keywords and phrases: complementary equation, complementary sequences, arithmetic sequences.

 c_i = smallest number $\neq a_1, a_2, \dots, a_i, c_1, c_2, \dots, c_{i-1}$ for $i \ge 2$. (see [1])

$$a_3 = c_1 + c_2$$
.

Since $a_i > c_{i-1}$ and the sequence (c_i) is definitely increasing, we obtain $a_{i+1} - a_i = c_i - c_{i-3} \ge 0$, so the sequence (a_i) is strictly increasing for at least $i \ge 4$. By example,

$$(a_i) = (1, 4, 5, 11, 16, 21, 24, \cdots),$$

 $(c_i) = (2, 3, 6, 7, 8, 9, \cdots).$

2. Results for $a_1 \equiv a_2 \equiv 3 \pmod{4}$

In this case, the sequences (a_i) convert to arithmetic sequences whose difference are 4.

Theorem 2.1. For
$$a_1 \equiv a_2 \equiv 3 \pmod{4}$$
, we have
 $a_i = 4i - 9 \text{ for } i \ge 4 \text{ and}$
 $c_i = \lfloor \frac{4i}{3} \rfloor \text{ for } i \ge 2.$

Proof. Definition (Gargano and Quintas, see [2]): Let f(n) be nondecreasing function, which maps the set of non-negative integers into itself and let

 $f^*(n) =$ the number of positive solutions k of the inequality f(k) < nor equivalently

 $f^*(n)$ = the largest integer k such that f(k) < n; 0 if no such k exists.

Theorem (Lambek, Moser and Shapiro, see [3], [4], [5]): If f(n) is a non-decreasing function, which maps the set of non-negative integers into itself, then F(n) = f(n) + n and $G(n) = f^*(n) + n$ complementary

sequences, and conversely if two strictly increasing sequences F(n) and G(n) are complementary, then there exists a non-decreasing function f(n) such that F(n) = f(n) + n and $G(n) = f^*(n) + n$.

Theorem (Gargano and Quintas, see [2]) (The formula for a complementary arithmetic sequence): If $F(n) = dn + a(d > 1; n \in \mathbb{Z}; a, d \in \mathbb{Z} \text{ are fixed})$ defines an arithmetic sequence of integers, then $G(n) = \left[\frac{(dn - a - 1)}{(d - 1)}\right]$ defines its complementary sequence.

By using above theorems and definition, we have $a_k = f(k) + k$ $\Rightarrow f(k) = a_k - k = 4k - 9 - k = 3k - 9$. The domain is \mathbb{Z} of f(k) and also since $f^*(i)$ = the number of positive solutions k of the inequality f(k) < i, we obtain 3k - 9 < i. Then $f^*(i) = \lfloor \frac{i+9-1}{3} \rfloor = \lfloor \frac{i+8}{3} \rfloor$ and $c_i = f^*(i) + i = \lfloor \frac{4i+8}{3} \rfloor$ for $i \ge 4$. It is clear that $c_i = \lfloor \frac{4i}{3} \rfloor$ for $i \ge 2$. And we obtain

$$a_{i} = c_{i-1} + c_{i-2} + c_{i-3},$$
$$a_{i} = \left\lfloor \frac{4(i-1)}{3} \right\rfloor + \left\lfloor \frac{4(i-2)}{3} \right\rfloor + \left\lfloor \frac{4(i-3)}{3} \right\rfloor = 4i - 9 \text{ for } i \ge 4.$$

For $a_3 \ge a_2 \ge a_1$, it is obvious that $c_1 = 1$. Using the third equation of (1), we have $c_i \ne a_j$ for $j \ge 1$ since $c_i \ne 3 \pmod{4}$. For $i = 3n(n \in \mathbb{Z}^+)$, we have $c_i = c_{i-1} + 2$, for $i = 3n + 1(n \in \mathbb{Z}^+)$ and $i = 3n + 2(n \in \mathbb{Z}^+)$, we have $c_i = c_{i-1} + 4$. For $i = 3n + 1(n \in \mathbb{Z}^+)$, we have $c_i = c_{i-3} + 4$ since $c_{i-3} + 3$ is an a_j for $j \le i$ as $c_{i-3} + 3 \equiv 0 \pmod{4}$ and as $a_i = 4i - 9 > \frac{4i - 13}{3} = c_{i-3}$ for $i \ge 4$.

3. Results for $a_1 \equiv a_2 \not\equiv 3 \pmod{4}$

For consecutive differences of the sequences (a_i) , the differences $\Delta_i = a_{i+1} - a_i$ for $i \ge 4$ are not always 4. Differences change for the given a_1 , a_2 , and *i* indices.

Theorem 3.1. For $a_1 = a_2 = 4j + r \ge 6$, r = 0, r = 1 or r = 2, we have a_3 and $\Delta_i = 4$ for $i \ge 4$, except for the indices

$$i = f_5(n, v, j, r)$$

$$= (3j+1)9^n + 1 + (v-2)\left(\frac{(v+r-4)(v+r-3)9^n}{2} + \frac{9^n - 1}{4}\right),$$
for $v = 1, 2, 3$ and $n = 0, 1, 2, \cdots$, where $\Delta_i = \begin{cases} 5, & \text{if } i \neq 3j+2, \\ 6, & \text{if } i = 3j+2. \end{cases}$

For
$$r = 0$$
,
 $i = f_3(n, v, j, r)$
 $= (3j+1)3^{2n+1} + (v-1) + (v-2)\left(\frac{(v+r-4)(v+r-3)9^n}{2} + \frac{9^n - 1}{4}\right)$,

for v = 1, 2, 3 and $n = 0, 1, 2, \dots$, where $\Delta_i = 3$.

For
$$r = 1$$
 and $r = 2$,
 $i = f_3(n, v, j, r)$
 $= (3j+1)3^{2n+1} + (v-2) + 3(v-2) \left(\frac{(v+r-4)(v+r-3)9^n}{2} + \frac{9^n - 1}{4} \right)$,

for v = 1, 2, 3 and $n = 0, 1, 2, \dots$, where $\Delta_i = 3$.

Proof. For $a_1 = a_2 \ge 6$, we obtain $c_1 = 1$, $c_2 = 2$ and $a_3 = 3$ by using (1). Since the sequence (c_i) starts as Theorem 3.1, we find $\Delta_i = 4$ for $4 \le i < 3j + r$ from (1) and Theorem 3.1.

$$\begin{split} 4 &\leq i < 3j + r \Rightarrow 16 \leq 4i < 12j + 4r \\ &\Rightarrow \frac{16}{3} \leq \frac{4i}{3} < \frac{12j + 4r}{3} \\ &\Rightarrow \lfloor \frac{16}{3} \rfloor \leq \lfloor \frac{4i}{3} \rfloor < \lfloor \frac{12j + 4r}{3} \rfloor \\ &\Rightarrow 5 \leq \lfloor \frac{4i}{3} \rfloor < 4j + r = a_1 = a_2, \end{split}$$

i = 3j + r determines the first c_i , which is different from the corresponding value in Theorem 2.1. For $a_1 = a_2 \ge 6$ and i = 3j + r - 1, 3j + r, 3j + r + 1, the values of c_i , a_i , and Δ_i are as in Tables 1, 2, 3 for the cases r = 0, r = 1, and r = 2.

For r = 0 and $q \in \mathbb{Z}^+ \cup \{0\}$, the values of (c_i) are as

$$(c_i) = \begin{cases} \left\lfloor \frac{4i}{3} \right\rfloor : 4 \le i < 3j + r, \\ \left\lfloor \frac{4i}{3} \right\rfloor + 1 : 3j + r \le i \le 3j + (r+1), \\ \left\lfloor \frac{4i}{3} \right\rfloor + 2 : 3j + (r+1) < i \le 3j + (r+2), \\ \vdots \\ \vdots \\ \left\lfloor \frac{4i}{3} \right\rfloor + 1 : 3j + r + (2q) \le i \le 3j + r + (2q+1), \\ \left\lfloor \frac{4i}{3} \right\rfloor + 2 : 3j + r + (2q+1) < i \le 3j + r + (2q+2). \end{cases}$$

It is clear that

for
$$i = 3j + 2$$
, $\Delta_i = 6$,
for $i \neq 3j + 2$, $\Delta_i = 5$,
for $4 \le i < 3j$, $\Delta_i = 4$.

Table 1. The case r = 0

i	c_i	a_i	Δ_i
3j - 1	4j - 2	12j - 13	4
3 <i>j</i>	4j + 1	12j - 9	5
3 <i>j</i> + 1	4j + 2	12j - 4	5
3j + 2	4j + 4	12j + 1	6

For r = 1 and $q \in \mathbb{Z}^+ \cup \{0\}$, the values of (c_i) are as

$$(c_i) = \begin{cases} \left\lfloor \frac{4i}{3} \right\rfloor : 4 \le i < 3j + r, \\ \left\lfloor \frac{4i}{3} \right\rfloor + 1 : 3j + r \le i < 3j + (r+1), \\ \left\lfloor \frac{4i}{3} \right\rfloor + 2 : 3j + (r+1) \le i < 3j + (r+2), \\ \vdots \\ \vdots \\ \left\lfloor \frac{4i}{3} \right\rfloor + 1 : 3j + r + (2q) \le i < 3j + r + (2q+1), \\ \left\lfloor \frac{4i}{3} \right\rfloor + 2 : 3j + r + (2q+1) \le i < 3j + r + (2q+2). \end{cases}$$

It is clear that

for
$$i = 3j + 2$$
, $\Delta_i = 6$,
for $i \neq 3j + 2$, $\Delta_i = 5$,
for $4 \le i < 3j + 1$, $\Delta_i = 4$.

i	c_i	a_i	Δ_i
3j - 1	4j-2	12j - 13	4
3 <i>j</i>	4j	12j - 9	4
3j + 1	4j + 2	12j - 5	5
3j + 2	4j + 4	12j	6

Table 2. The case r = 1

For r = 2 and $q \in \mathbb{Z}^+ \cup \{0\}$, the values of (c_i) are as

$$(c_i) = \begin{cases} \left\lfloor \frac{4i}{3} \right\rfloor : 4 \le i < 3j + r, \\ \left\lfloor \frac{4i}{3} \right\rfloor + 2 : 3j + r \le i < 3j + (r+1), \\ \left\lfloor \frac{4i}{3} \right\rfloor + 1 : 3j + (r+1) \le i < 3j + (r+2), \\ \vdots \\ \vdots \\ \left\lfloor \frac{4i}{3} \right\rfloor + 2 : 3j + r + (2q) \le i < 3j + r + (2q+1), \\ \left\lfloor \frac{4i}{3} \right\rfloor + 1 : 3j + r + (2q+1) \le i < 3j + r + (2q+2). \end{cases}$$

It is clear that

for
$$i = 3j + 2$$
, $\Delta_i = 6$,
for $i \neq 3j + 2$, $\Delta_i = 5$,
for $4 \le i < 3j + 2$, $\Delta_i = 4$.

i	c_i	a_i	Δ_i
3j - 1	4j - 2	12j - 13	4
3 <i>j</i>	4j	12j - 9	4
3j + 1	4j + 1	12j - 5	4
3j + 2	4j + 4	12j - 1	6
3j + 3	4j + 5	12j + 5	5

Table 3. The case r = 2

So these occur exceptional differences $\Delta_i = 5$ or $\Delta_i = 6$ as shown for n = 0 and v = 1, 2, 3. There exists three cases for i = 3j + 2 relating to differences $\Delta_i = 5$ or $\Delta_i = 6$.

$$3j + 2 = f_5(0, 2, j, 0) = f_5(0, 3, j, 0),$$

$$3j + 2 = f_5(0, 2, j, 1) = f_5(0, 3, j, 1),$$

$$3j + 2 = f_5(0, 1, j, 2) = f_5(0, 2, j, 2).$$

(2)

We will see that differences $\Delta_x = 4, 5$, and 6 in (a_i) determine $\Delta_x - 1$ consecutive numbers in (c_i) , which make consecutive differences Δ_i which is 2 or 3. Differences $\Delta_i = 3$ come from only $\Delta_x = 5$ and 6 and make $\Delta_j = 5$ each. These cases (Δ_i) exactly.

i	c_i	a_i	Δ_i
x		a_x	4
		$a_x + 4$	
:	÷	:	:
	$a_x - 1$		
	$a_x + 1$		
	$a_x + 2$	$2a_x + 5$	4
	$a_x + 3$	$2a_x + 9$	4
		$2a_x + 13$	

Table 4. Differences 4 determined by $\Delta_x = 4$

We assume that $\Delta_x = 5$ and $a_x = 4x - d_x$. We obtain exceptional differences $\Delta_y = 3$ and $\Delta_z = 5$ by using (1) as shown in Table 5. Additionally, Table 5 shows that if these indices are between x and y, another differences in (a_i) are 5 or 3, if these indices are between y and z, another differences in (a_i) are 3 or 5. With $a_i = 4i - d_i$, we have

$$d_{i+1} = d_i + 4 - \Delta_i.$$
(3)

In Table 5, $d_z = d_x$.

 $a_z = 4z - d_z = 4z - d_x = 36x - 9d_x + 20$ determines $z = 9x - 2d_x + 5$.

From $a_y = 4y - d_y = 12x - 3d_x + 6$, we obtain $y = 3x + \frac{3}{2} - \left(\frac{3d_x - d_y}{4}\right)$.

i	a_i	Δ_i
x	$4x - d_x$	5
<i>x</i> + 1	$4x - d_x + 5$	
:	:	:
$y = 3x + \frac{3}{2} - \left(\frac{3d_x - d_y}{4}\right)$	$12x - 3d_x + 6$	3
	$12x - 3d_x + 9$	4
	$12x - 3d_x + 13$	
:	÷	:
$z = 9x - 2d_x + 5$	$36x - 9d_x + 20$	5
	$36x - 9d_x + 25$	

Table 5. Differences 3, 4, and 5 determined by $\Delta_x = 5$

If $\Delta_x = 6$, $\Delta_y = \Delta_{y+1} = 3$, and $\Delta_z = \Delta_{z+1} = 5$ are shown in Table 6 related to Table 5.

Table 6. Differences 3, 4, and 5 determined by $\Delta_x = 6$

i	a_i	Δ_i
x	$4x - d_x$	6
<i>x</i> + 1	$4x - d_x + 6$	
E	E	:
$y = 3x + \frac{3}{2} - \left(\frac{3d_x - d_y}{4}\right)$	$12x - 3d_x + 6$	3
<i>y</i> + 1	$12x - 3d_x + 9$	3
	$12x - 3d_x + 12$	
E	E	:
$z = 9x - 2d_x + 5$	$36x - 9d_x + 20$	5
<i>z</i> + 1	$36x - 9d_x + 25$	5
	$36x - 9d_x + 30$	

We will observe that differences $\Delta_i = 3, 5$ or 6, which are seen in the first rows of Tables 7, 8, and 9 for r = 0, r = 1, and r = 2 with the help of Tables 4, 5, and 6 related to Tables 1, 2, and 3.

Δ_i	5	6	3	3	3	
n	0	0	0	0	0	
υ	1	2, 3	1	2	3	
d_i	9	7	5	6	7	

Table 7. Exceptional differences in the case r = 0

Table 8. Exceptional differences in the case r = 1

Δ_i	5	6	3	3	3	
n	0	0	0	0	0	
υ	1	2, 3	1	2	3	
d_i	9	8	5	6	7	

Table 9. Exceptional differences in the case r = 2

Δ_i	5	6	3	3	3	
n	0	0	0	0	0	
υ	1, 2	3	1	2	3	
d_i	9	7	5	6	7	

Depending on (3) following values change only for $\Delta_i \neq 4$. Briefly

$$d_i = 10 - v \text{ for } \Delta_i = 5 \text{ and}$$

$$d_i = v + 4 \text{ for } \Delta_i = 3.$$
(4)

In case of r = 0, r = 1, and r = 2 for $\Delta_i = 5$, we have

$$d_{3j+r} = d_{3j} = 9, \text{ if } r = 0,$$

$$d_{3j+r} = d_{3j+1} = 9, \text{ if } r = 1,$$

$$d_{3j+r} = d_{3j+2} = 9, \text{ if } r = 2$$

From Theorem 3.1 and Table 5, we know $x = f_5(n, v, j, r)$ and $z = 9x - 2d_x + 5$ for $\Delta_x = 5$ and $d_x = 10 - v$ from (3), we obtain

$$z = 9x - 2d_x + 5$$

= $9f_5(n, v, j, r) - 2(10 - v) + 5$
= $9f_5(n, v, j, r) + 2v - 15 = f_5(n + 1, v, j, r).$

From (3), we know $d_y = v + 4$ and $y = 3x + \frac{3}{2} - \left(\frac{3d_x - d_y}{4}\right)$ from Table 5,

we obtain

$$y = f_3(n, v, j, r)$$

= $3f_3(n, v, j, r) + \frac{3}{2} - \left(\frac{3(10 - v) - (v - 4)}{4}\right)$
= $3f_3(n, v, j, r) + v - 5.$

Corollary 3.1. For $a_1 = a_2 = 4j + r \ge 6$, and r = 0, 1, 2 with f_3 and f_5 from Theorem 3.1, we have

$$a_i = 4i - 9$$
 for $4 \le i < 3j + r = f_5(0, 1, j, r)$,

and

$$a_i = 4i - d_m$$
 for $s < i \le m$,

where $\Delta_s \neq 4$ and $\Delta_m \neq 4$ are two consecutive exceptional differences and

$$d_m = \begin{cases} 10 - v, & \text{if } m = f_5(n, v, j, r), \\ v + 4, & \text{if } m = f_3(n, v, j, r). \end{cases}$$

4. Some Cases

For $a_1 = a_2 = 1, 2, 4$, and 5, the sequences (a_i) are

(i) For $a_1 = a_2 = 1$, we have $a_i = 4i - 7$ for $i \ge 4$.

(ii) For $a_1 = a_2 = 2$, it exists cases as Table 5 for $i \ge 3$.

(iii) For $a_1 = a_2 = 4$ and $a_1 = a_2 = 5$, it exists cases as Table 6 for $i \ge 4$.

References

- P. Jens-Bode, H. Harborth and C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quart. 45 (2007), 254-264.
- [2] M. L. Gargano and L. V. Quintas, Complementary arithmetic sequences, Congr. Numer. 192 (2003), 33-42.
- [3] J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, The American Mathematical Monthly 61 (1954), 454-458.
- [4] R. P. Grimaldi, Discrete and Combinatorial Mathematics, 4th Edition, Addison-Wesley, Redwood City, California, 1999.
- [5] R. Honsberger, Inqenuity in mathematics, New Mathematics Library # 23, MAA (1970), 93-110.