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Abstract 

 Assuming non-empty two sequences of positive integers are naaa ,,, 21 "  and 

.,,, 21 mccc "  If two sequences have no common elements and they are 

definitely increasing, they are called “complementary”. When 1a  and 2a  are 

given, we obtain ( )ia  by the help of ( ) ,ic  which occurs Tribonacci-like 

recurrence 321 −−− ++= iiii ccca  for .4≥i  In this case, the sequence ( )ic  is 

the complement of ( ) .ia  

1. Introduction 

For ,21 aa ≤  the sequences ( )ia  and ( )ic  are defined by  

,4for321 ≥++= −−− iccca iiii  

=1c  smallest number ,, 21 aa≠        (see [1]) (1) 
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=ic  smallest number .2for,,,,,,, 12121 ≥≠ − icccaaa ii ""   (see [1]) 

.213 cca +=  

Since 1−> ii ca  and the sequence ( )ic  is definitely increasing, we obtain 

,031 ≥−=− −+ iiii ccaa  so the sequence ( )ia  is strictly increasing for at 

least .4≥i  By example, 

( ) ( ),,24,21,16,11,5,4,1 "=ia  

( ) ( ).,9,8,7,6,3,2 "=ic  

2. Results for ( )4mod321 ≡≡ aa  

In this case, the sequences ( )ia  convert to arithmetic sequences 

whose difference are 4. 

Theorem 2.1. For ( ),4mod321 ≡≡ aa  we have 

andiforiai 494 ≥−=  

-- .23
4 ≥= iforici  

Proof. Definition (Gargano and Quintas, see [2]): Let ( )nf  be non-

decreasing function, which maps the set of non-negative integers into 
itself and let 

( ) =∗ nf  the number of positive solutions k of the inequality ( ) nkf <  

or equivalently 

( ) =∗ nf  the largest integer k such that ( ) 0;nkf <  if no such k exists. 

Theorem (Lambek, Moser and Shapiro, see [3], [4], [5]): If ( )nf  is a 

non-decreasing function, which maps the set of non-negative integers  

into itself, then ( ) ( ) nnfnF +=  and ( ) ( ) nnfnG += ∗  complementary 
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sequences, and conversely if two strictly increasing sequences ( )nF  and 

( )nG  are complementary, then there exists a non-decreasing function 

( )nf  such that ( ) ( ) nnfnF +=  and ( ) ( ) .nnfnG += ∗  

Theorem (Gargano and Quintas, see [2]) (The formula for a 
complementary arithmetic sequence): If ( ) ( ;;1 Z∈>+= ndadnnF  

)fixedare, Zda ∈  defines an arithmetic sequence of integers, then 

( ) [ ( )
( ) ]1

1
−

−−= d
adnnG  defines its complementary sequence. 

By using above theorems and definition, we have ( ) kkfak +=  

( ) .9394 −=−−=−=⇒ kkkkakf k  The domain is Z  of ( )kf  and also 

since ( ) =∗ if  the number of positive solutions k of the inequality 

( ) ,ikf <  we obtain .93 ik <−  Then ( ) =−+=∗  3
19iif   3

8+i  and 

( )  3
84 +=+= ∗ iiifci  for .4≥i  It is clear that  3

4ici =  for .2≥i  

And we obtain 

,321 −−− ++= iiii ccca  

( ) ( ) ( ) .4for943
34

3
24

3
14 ≥−=



 −+



 −+



 −= iiiiiai  

For ,123 aaa ≥≥  it is obvious that .11 =c  Using the third equation 

of (1), we have ji ac ≠  for 1≥j  since ( ).4mod3≡/ic  For 

( ),3 +∈= Znni  we have ,21 += −ii cc  for ( )+∈+= Znni 13  and 

( ),23 +∈+= Znni  we have .41 += −ii cc  For ( ),13 +∈+= Znni  we 

have 43 += −ii cc  since 33 +−ic  is an ja  for ij ≤  as 

( )4mod033 ≡+−ic  and as >−= 94iai  33
134

−=−
ici  for .4≥i  
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3. Results for ( )4mod321 ≡/≡ aa  

For consecutive differences of the sequences ( ),ia  the differences 

iii aa −=∆ +1  for 4≥i  are not always 4. Differences change for the 

given ,, 21 aa  and i indices. 

Theorem 3.1. For 1,0,6421 ==≥+== rrrjaa  or ,2=r  we 

have 3a  and 4=∆i  for ,4≥i  except for the indices 

( )rjvnfi ,,,5=  

( ) ( ) ( ) ( ) ,4
19

2
93421913 







 −+
−+−+

−+++=
nn

n rvrvvj  







+=

+≠
=∆==

.23,6

,23,5
,,2,1,03,2,1

jiif

jiif
wherenandvfor i"  

,0=rFor  

( )rjvnfi ,,,3=  

 ( ) ( ) ( ) ( ) ( ) ,4
19

2
93421313 12








 −+
−+−+

−+−++= +
nn

n rvrvvvj  

for 3,2,1=v  and ,,2,1,0 "=n  where .3=∆i  

For ,21 == randr  

( )rjvnfi ,,,3=  

 ( ) ( ) ( ) ( ) ( ) ,4
19

2
934232313 12








 −+
−+−+

−+−++= +
nn

n rvrvvvj  

for 3,2,1=v  and ,,2,1,0 "=n  where .3=∆i  
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Proof. For ,621 ≥= aa  we obtain 2,1 21 == cc  and 33 =a  by 

using (1). Since the sequence ( )ic  starts as Theorem 3.1, we find 4=∆i  

for rji +<≤ 34  from (1) and Theorem 3.1. 

rjirji 41241634 +<≤⇒+<≤  

3
412

3
4

3
16 rji +<≤⇒  

 3
412

3
4

3
16 rji +<≤⇒  

,43
45 21 aarji ==+<



≤⇒  

rji += 3  determines the first ,ic  which is different from the 

corresponding value in Theorem 2.1. For 621 ≥= aa  and ,13 −+= rji  

,13,3 +++ rjrj  the values of ,, ii ac  and i∆  are as in Tables 1, 2, 3 for 

the cases ,1,0 == rr  and .2=r  

For 0=r  and { },0∪+∈ Zq  the values of ( )ic  are as 

( )

( )

( ) ( )

( ) ( )

( ) ( )

























+++≤<++++





+++≤≤+++





++≤<+++





++≤≤++





+<≤





=

.223123:23
4

,12323:13
4

,2313:23
4

,133:13
4

,34:3
4

qrjiqrji

qrjiqrji

rjirji

rjirji

rjii

ci

#

#

#
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It is clear that 

for ,6,23 =∆+= iji  

for ,5,23 =∆+=/ iji  

for .4,34 =∆<≤ iji  

Table 1. The case 0=r  

i ic  ia  i∆  

3j – 1 4j – 2 12j – 13 4 

3j 4j + 1 12j – 9 5 

3j + 1 4j + 2 12j – 4 5 

3j + 2 4j + 4 12j + 1 6 

For 1=r  and { },0∪+∈ Zq  the values of ( )ic  are as 

( )

( )

( ) ( )

( ) ( )

( ) ( )

























+++<≤++++





+++<≤+++





++<≤+++





++<≤++





+<≤





=

.223123:23
4

,12323:13
4

,2313:23
4

,133:13
4

,34:3
4

qrjiqrji

qrjiqrji

rjirji

rjirji

rjii

ci

#

#

#
 

It is clear that 

for ,6,23 =∆+= iji  

for ,5,23 =∆+=/ iji  

for .4,134 =∆+<≤ iji  



COMPLEMENTARY TRIBONACCI SEQUENCES 71

Table 2. The case 1=r  

i ic  ia  i∆  

3j – 1 4j – 2  12j – 13 4 

3j 4j 12j – 9 4 

3j + 1 4j + 2 12j – 5 5 

3j + 2 4j + 4    12j 6 

For 2=r  and { },0∪+∈ Zq  the values of ( )ic  are as 

( )

( )

( ) ( )

( ) ( )

( ) ( )

























+++<≤++++





+++<≤+++





++<≤+++





++<≤++





+<≤





=

.223123:13
4

,12323:23
4

,2313:13
4

,133:23
4

,34:3
4

qrjiqrji

qrjiqrji

rjirji

rjirji

rjii

ci

#

#

#
 

It is clear that 

for ,6,23 =∆+= iji  

for ,5,23 =∆+=/ iji  

for .4,234 =∆+<≤ iji  
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Table 3. The case 2=r  

i ic  ia  i∆  

3j – 1 4j – 2 12j – 13 4 

3j 4j 12j – 9 4 

3j + 1 4j + 1 12j – 5 4 

3j + 2 4j + 4 12j – 1 6 

3j + 3 4j + 5 12j + 5 5 

So these occur exceptional differences 5=∆i  or 6=∆i  as shown for 
0=n  and .3,2,1=v  There exists three cases for 23 += ji  relating to 

differences 5=∆i  or .6=∆i  

( ) ( ),0,,3,00,,2,023 55 jfjfj ==+  

( ) ( ),1,,3,01,,2,023 55 jfjfj ==+   (2) 

( ) ( ).2,,2,02,,1,023 55 jfjfj ==+  

We will see that differences ,5,4=∆x  and 6 in ( )ia  determine 
1−∆x  consecutive numbers in ( ),ic  which make consecutive differences 

i∆  which is 2 or 3. Differences 3=∆i  come from only 5=∆x  and 6 and 
make 5=∆ j  each. These cases ( )i∆  exactly. 
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Table 4. Differences 4 determined by 4=∆x  

i ic  ia  i∆  

x  xa  4 

  4+xa   

#  #  #  #  

 1−xa    

 1+xa    

 2+xa  52 +xa  4 

 3+xa  92 +xa  4 

  132 +xa   

We assume that 5=∆x  and .4 xx dxa −=  We obtain exceptional 

differences 3=∆ y  and 5=∆z  by using (1) as shown in Table 5. 

Additionally, Table 5 shows that if these indices are between x and y, 
another differences in ( )ia  are 5 or 3, if these indices are between y and 

z, another differences in ( )ia  are 3 or 5. With ,4 ii dia −=  we have 

.41 iii dd ∆−+=+   (3) 

In Table 5, .xz dd =  

2093644 +−=−=−= xxzz dxdzdza  determines .529 +−= xdxz  

From ,63124 +−=−= xyy dxdya  we obtain .4
3

2
33 







 −
−+= yx dd

xy   
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Table 5. Differences 3, 4, and 5 determined by 5=∆x  

i ia  i∆  

x xdx −4  5 

x + 1 54 +− xdx   

#  #  #  








 −
−+=

4
3

2
33 yx dd

xy  
6312 +− xdx  3 

 9312 +− xdx  4 

 13312 +− xdx   

#  #  #  

529 +−= xdxz  20936 +− xdx  5 

 25936 +− xdx   

If ,3,6 1 =∆=∆=∆ +yyx  and 51 =∆=∆ +zz  are shown in Table 6 

related to Table 5. 

Table 6. Differences 3, 4, and 5 determined by 6=∆x  

i ia  i∆  

x xdx −4  6 

x + 1 64 +− xdx   

#  #  #  








 −
−+= 4

3
2
33 yx dd

xy  
6312 +− xdx  3 

y + 1 9312 +− xdx  3 

 12312 +− xdx   

#  #  #  

529 +−= xdxz  20936 +− xdx  5 

z + 1 25936 +− xdx  5 

 30936 +− xdx   
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We will observe that differences 5,3=∆i  or 6, which are seen in the 
first rows of Tables 7, 8, and 9 for ,1,0 == rr  and 2=r  with the help 
of Tables 4, 5, and 6 related to Tables 1, 2, and 3. 

Table 7. Exceptional differences in the case 0=r  

i∆  5 6 3 3 3 "  

n 0 0 0 0 0 "  

v 1 2, 3 1 2 3 "  

id  9 7 5 6 7 "  

Table 8. Exceptional differences in the case 1=r  

i∆  5 6 3 3 3 "  

n 0 0 0 0 0 "  

v 1 2, 3 1 2 3 "  

id  9 8 5 6 7 "  

Table 9. Exceptional differences in the case 2=r  

i∆  5 6 3 3 3 "  

n 0 0 0 0 0 "  

v 1, 2 3 1 2 3 "  

id  9 7 5 6 7 "  

Depending on (3) following values change only for .4≠∆i  Briefly 

and5for10 =∆−= ii vd  

.3for4 =∆+= ii vd   (4) 

In case of ,1,0 == rr  and 2=r  for ,5=∆i  we have 

,0if,933 ===+ rdd jrj  

,1if,9133 === ++ rdd jrj  

.2if,9233 === ++ rdd jrj  
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From Theorem 3.1 and Table 5, we know ( )rjvnfx ,,,5=  and −= xz 9  

52 +xd  for 5=∆x  and vdx −= 10  from (3), we obtain 

529 +−= xdxz  

( ) ( ) 5102,,,9 5 +−−= vrjvnf  

( ) ( ).,,,1152,,,9 55 rjvnfvrjvnf +=−+=  

From (3), we know 4+= vdy  and 






 −
−+= 4

3
2
33 yx dd

xy  from Table 5, 

we obtain 

( )rjvnfy ,,,3=  

( ) ( ) ( )






 −−−−+= 4

4103
2
3,,,3 3

vvrjvnf  

( ) .5,,,3 3 −+= vrjvnf  

Corollary 3.1. For ,6421 ≥+== rjaa  and 2,1,0=r  with 3f  

and 5f  from Theorem 3.1, we have 

( ),,,1,03494 5 rjfrjiforiai =+<≤−=  

and 

mi dia −= 4  for ,mis ≤<  

where 4≠∆s  and 4≠∆m  are two consecutive exceptional differences and 

( )

( )





=+

=−
=

.,,,,4

,,,,,10

3

5

rjvnfmifv

rjvnfmifv
dm  
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4. Some Cases 

For ,4,2,121 == aa  and 5, the sequences ( )ia  are 

(i) For ,121 == aa  we have 74 −= iai  for .4≥i  

(ii) For ,221 == aa  it exists cases as Table 5 for .3≥i  

(iii) For 421 == aa  and ,521 == aa  it exists cases as Table 6 for 

.4≥i  
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