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Abstract
Assuming non-empty two sequences of positive integers are a;, ag, -+, @, and
c1, €9, -+, €. If two sequences have no common elements and they are

definitely increasing, they are called “complementary”. When «; and a9 are
given, we obtain (a;) by the help of (¢;), which occurs Tribonacci-like
recurrence @; = ¢j_1 + ¢;j_g +¢;_g for i > 4. In this case, the sequence (¢;) is

the complement of (q; ).
1. Introduction

For a; < ag, the sequences (q; ) and (c; ) are defined by
Q; =¢j_1 +Cj_g +c;_g for i > 4,

¢; = smallest number # a;, ag, (see [1]) 1)

2010 Mathematics Subject Classification: Primary 11B20, 11B25.
Keywords and phrases: complementary equation, complementary sequences, arithmetic
sequences.

Received April 10, 2014
© 2014 Scientific Advances Publishers



66 DURSUN TASCI and SIMGE ODABAS
¢; = smallest number # aq, ag, -+, @;, ¢, g9, -, ¢;_1 for i > 2. (see [1])
ag =€ +Cg.

Since a; > ¢;_; and the sequence (c;) is definitely increasing, we obtain
aj.1 —a; =c¢; —cj_3 = 0, sothe sequence (q; ) is strictly increasing for at

least i > 4. By example,
(a;)=(, 4, 5,11, 16, 21, 24, ---),

(¢;)=1(2,8,6,7,8,9, ).
2. Results for a; = ay = 3(mod 4)

In this case, the sequences (a;) convert to arithmetic sequences

whose difference are 4.
Theorem 2.1. For a; = a9 = 3(mod 4), we have
a; =4i—-9 for i > 4 and

4i

¢ = |§J for i > 2.

Proof. Definition (Gargano and Quintas, see [2]): Let f(n) be non-

decreasing function, which maps the set of non-negative integers into

itself and let
f*(n) = the number of positive solutions k of the inequality f(k) < n
or equivalently
f*(n) = the largest integer k such that f(k) < n; 0 if no such k exists.

Theorem (Lambek, Moser and Shapiro, see [3], [4], [5]): If f(n) is a
non-decreasing function, which maps the set of non-negative integers

into itself, then F(n) = f(n)+n and G(n) = f'(n)+n complementary
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sequences, and conversely if two strictly increasing sequences F(n) and

G(n) are complementary, then there exists a non-decreasing function
f(n) such that F(n) = f(n)+n and G(n) = f*(n) + n.
Theorem (Gargano and Quintas, see [2]) (The formula for a

complementary arithmetic sequence): If F(n)=dn+a(d >1;n € Z,

a, d € Z are fixed) defines an arithmetic sequence of integers, then

G(n) = (dn—a- % _1) ] defines its complementary sequence.

By using above theorems and definition, we have aj = f(k)+ k
= f(k)=ap —k =4k -9 -k = 3k — 9. The domain is Z of f(k) and also
since f*(i) = the number of positive solutions k of the inequality

1+9-1 1+ 8

f(k) < i, we obtain 3k -9 <i. Then f*(i)=| 3 1= 1 3 | and

41+ 8
3

¢ = G +i= 28 for i >4 Tt is clear that ¢; = L%J for i > 2.
And we obtain

a; =¢Cj1 +¢_9 tC_3,

[4(1' —1)J N {4(“ - 2)J s [4(" - 3)J = 4i—9fori>4

i 3 3 3

For ag > a9 > aq, it is obvious that ¢; = 1. Using the third equation

of (1), we have ¢ #a; for j>1 since ¢; #3(mod4). For
i=3n(neZ"), we have ¢; =c; 1 +2, for i =3n+1(neZ") and

i=3n+2neZ"), we have ¢; =c¢;_; +4. For i =3n+1(neZ"), we

have ¢ =¢_3+4 since ¢_3+3 1s an a;

for j<i as
4i - 13

3

¢;_3 +3=0(mod4) and as a; = 4i -9 > = ¢;_g for i > 4.
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3. Results for a; = ay # 3(mod 4)

For consecutive differences of the sequences (a;), the differences
A; =a;,1 —a; for i 24 are not always 4. Differences change for the

given aq, ag, and i indices.

Theorem 3.1. For a1 =a9g =4j+r26,r=0,r=1 or r =2, we

have as and A; = 4 for i > 4, except for the indices

i =fs(n, v, j, 1)

= (3j +1)9" +1+(v_2)((v+r‘4)(;+r—3)9” | 9”4—1),

5, ifi#3j+2
forv=1,23and n=0,1,2, -, where A; =
6, ifi=3j+2.

Forr =0,

i = f3(n, v, j, r)

:(3j+1)32”+1+(v—1)+(v—2){(v+r 4)(;’” 3)9 +94 lj,
forv=123and n=0,1,2, -, where A; = 3.
Forr=1and r = 2,

1= fS(n’ v, j’ 7‘)

=(3j+1)32"! + (v-2)+3(v _2)((U+ 7“—4)(;}+ r—3)9" . 9"4_1}

forv :1, 2’3 andnzo, 1’ 2""’ where Al = 3.
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Proof. For a; = a9 26, we obtain ¢ =1,¢c9 =2 and a3 =3 by
using (1). Since the sequence (c;) starts as Theorem 3.1, we find A; = 4
for 4 <i < 3j+r from (1) and Theorem 3.1.

4<i1<3j+r =16 <41 <12j+4r

16 _ 4i  12j +4r
= — < — < —
3 3

TN

:5S[%J<4j+r:al = ag,
i =3j+r determines the first ¢;, which is different from the

corresponding value in Theorem 2.1. For a; = a9 26 and i = 3j +r —1,

3j+r,3j+r+1, the values of ¢;, aq;, and A; are as in Tables 1, 2, 3 for
thecases r =0, r =1, and r = 2.
For r = 0 and g € Z* U {0}, the values of (c;) are as
L%J:4si<3j+r,
4i . . .
3 1:8j+r<i<3j+(r+1),

YHJ 2:3j+(r+1)<i<38j+(r+2),

(c;) =

[ﬂJ 1:3j+r+(29)<i<38j+r+(2¢+1),

L4LJ+2:3j+r+(2q+1)<is3j+r+(2q+2).
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It is clear that

For r =1 and q € Z* U {0}, the values of (c;) are as

(c:) =

It is clear that

for i = 3j+2, A; = 6,
fori#3j+2,Ai:5,

fOI‘4Si<3j,Ai=4.

Table 1. The case r = 0

: ¢ a; A
3i—1 4j-2 12/ - 13 4
3j 4j+1 12/ -9 5
3+ 1 4j+2 12j -4 5
3j+2 4j+4 12/ +1 6

4i

4i

for i =3j+2, A; =6,

for i #3j+2, A; =5,

for 4 <i<3j+1, A; =4.

L§J14si<3j+r,

L%J 1:3j+r<i<3j+(r+1),

{%J+2:3j+(r+1)£i<3j+(r+2),

L%J 1:3j+r+(29)<i<3j+r+(2¢+1),

LgJ 2:8j+r+2¢+1)<i<38j+r+(2¢+2).
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Table 2. Thecase r =1

i ¢ a; A
3-1 | 4j-2 12/-13 | 4
3j 4j 12/-9 4
3j+1 | 4+2 12 -5 5
3j+2 4j+4 12j 6

For r = 2 and q € Z* U {0}, the values of (c;) are as

{%J:4Si<3j+r,

L%J 2:8j+r<i<3j+(r+1),

L%J 1:3j+(r+1)<i<3j+(r+2),

(¢;) =

L%J 1:3j+r+(2¢+1)<i<3j+r+(2q+2).
It is clear that

fori=3j+2,A; =6,

fori# 3j+2, A; =5,

for 4 <i<3j+2 A =4.

71
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Table 3. The case r = 2

i ci aj A
3ji—-1 4j -2 12j—13 4
3j 4j 12j-9 4
3j+1 4j+1 12/ -5 4
3j+2 4j+4 12/ -1 6
3j+3 4j+5 12j+5 5

So these occur exceptional differences A; =5 or A; = 6 as shown for
n =0 and v =1, 2, 3. There exists three cases for i = 3j + 2 relating to

differences A; =5 or A; = 6.
3j+2= /50,2 j,0) = f5(0, 3, j, 0),
3j+2=1/5(0,2j,1)=f;0,3,Jj,1), @
3j+2=1£001,J,2)=£(0,2 ], 2).

We will see that differences A, = 4,5, and 6 in (a;) determine
A, —1 consecutive numbers in (¢;), which make consecutive differences
A; which is 2 or 3. Differences A; = 3 come from only A, =5 and 6 and

make A; =5 each. These cases (A;) exactly.
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Table 4. Differences 4 determined by A, = 4

i ci a; A;
X Ay 4
a, +4
ay -1
a, +1
ay +2 2a, +5 4
a, +3 2a, +9 4
2a, +13

We assume that A, =5 and a, = 4x —d,. We obtain exceptional
differences A, =3 and A, =5 by using (1) as shown in Table 5.

Additionally, Table 5 shows that if these indices are between x and y,

another differences in (a;) are 5 or 3, if these indices are between y and

z, another differences in (a;) are 3 or 5. With a; = 4i — d;, we have
diyg =di +4-A;. 3
In Table 5, d, = d,.

a, =4z-d, = 4z -d, = 36x — 9d, + 20 determines z = 9x — 2d, + 5.

) 3 (3dy-d,
From a, =4y-d, =12x - 3d, +6, we obtain y=3x+§— — |
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Table 5. Differences 3, 4, and 5 determined by A, =5

i a; A;
x 4x —d, 5
x+1 4x —d, +5

3 (3dy -d, 12x — 3d, + 6 3
y=3x+o | —=
2 4
12x - 3d, + 9 4
12x - 3d, +13
z=9x-2d, +5 36x — 9d,. + 20 5
36x — 9d, + 25

If Ay, =6,A,=Ay;; =3 and A, =A.,; =5 are shown in Table 6
related to Table 5.

Table 6. Differences 3, 4, and 5 determined by A, = 6

i a; A;
x 4x —d, 6

x+1 dx —d, +6
3 3dy _dy 12x - 3d, + 6 3

S VR S Bt S
y x+2 [ 1

yt+1 12x - 3d, +9 3

12x — 3d, +12
z=9x-2d, +5 36x — 9d,. + 20 5
z+1 36x — 9d,. + 25 5

36x — 9d, + 30
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We will observe that differences A; = 3, 5 or 6, which are seen in the
first rows of Tables 7, 8, and 9 for r = 0, r =1, and r = 2 with the help
of Tables 4, 5, and 6 related to Tables 1, 2, and 3.

Table 7. Exceptional differences in the case r = 0
A; 5 6 3 3 3
n 0 0 0 0 0
v 1 2,3 1 2 3
d; 9 7 5 6 7
Table 8. Exceptional differences in the case r = 1
A; 5 6 3 3 3
n 0 0 0 0 0
v 1 2,3 1 2 3
d; 9 8 5 6 7

Table 9. Exceptional differences in the case r = 2

A; 5 6 3 3
n 0 0 0 0
v 1,2 3 1 2
d; 9 7 5 6

Depending on (3) following values change only for A; = 4. Briefly

d; =10 -v for A; =5 and

d; =v+4 for A; =3. 4)
Incaseof r =0, r =1, and r = 2 for A; = 5, we have
d3j+r :d3j 29, if 7‘20,

d3j+r =d3j+1 29, if?':].,

d3j+r = d3j+2 = 9, if r=2.
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From Theorem 3.1 and Table 5, we know x = f5(n, v, j, r) and z = 9x —

2d, +5 for A, =5 and d, =10 —v from (3), we obtain
z=9%—-2d, +5
=9f5(n, v, j, r)-2(10 —v)+ 5
=9f5(n, v, j,r)+20-15 = f5(n+1, v, j, r).

3 (3dy—d,
From (3), we know d, =v +4 and y = 3x + s |71 from Table 5,

we obtain

y = f3(n7 v, j7 7')

= 3f3(n, v, Jj, r)+%—(3(10 —v)4— (v- 4)]

= 3f3(n, v, j, r)+v-5.

Corollary 3.1. For a; =ag =4j+r 26, and r=0,1,2 with f3

and f5 from Theorem 3.1, we have
a; =4i-9 for 4 <i<3j+r=1[50,1, j,r),
and
a; =4i—d,, for s <i<m,
where Ay # 4 and A, # 4 are two consecutive exceptional differences and

1O_U> ifm:f5(n’ v, j’ l"),
d, =
v+ 4, if m=f3(n,v, j, 7).
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4. Some Cases

For a; = a9 =1, 2, 4, and 5, the sequences (a;) are
(1) For a; = a9 =1, wehave aq; =4i -7 for i > 4.
(1) For a; = ag = 2, it exists cases as Table 5 for i > 3.

(iii) For a; = ag =4 and a; = ag =5, it exists cases as Table 6 for

P> 4.
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